2018 20th National Power Systems Conference (NPSC) 2018
DOI: 10.1109/npsc.2018.8771722
|View full text |Cite
|
Sign up to set email alerts
|

A Comparative Study Between Prony and Eigensystem Realization Algorithm for Identification of Electromechanical Modes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 8 publications
0
1
0
2
Order By: Relevance
“…Uma vez calculados os Parâmetros de Markov do sistema, podemos utilizar um método de identificac ¸ão para determinar as matrizes A, B e C em (2). Neste trabalho, o algoritmo ERA (Eigensystem Realization Algorithm) foi utilizado [13].…”
Section: Identificac ¸ãO De Sistemaunclassified
“…Uma vez calculados os Parâmetros de Markov do sistema, podemos utilizar um método de identificac ¸ão para determinar as matrizes A, B e C em (2). Neste trabalho, o algoritmo ERA (Eigensystem Realization Algorithm) foi utilizado [13].…”
Section: Identificac ¸ãO De Sistemaunclassified
“…Uma vez calculados os Parâmetros de Markov do sistema, pode-se utilizar um método de identificação para determinar as matrizes A, B e C em (2). Neste trabalho, o algoritmo ERA (Eigensystem Realization Algorithm) foi utilizado (Sarkar et al, 2018).…”
Section: Identifica ç ãO De Sistemaunclassified
“…System identification technologies represented by stochastic subspace identification (SSI) [20,[25][26][27] and eigensystem realization algorithm (ERA) [28] were introduced to estimate the electromechanical modes from ambient responses earlier, which is different from traditional algorithm such as Prony algorithm [29]. e classical ERA must be combined with the natural excitation technique (NExT) [30] or the random decrement technique (RDT) [31] because of the requirements of the impulse response as input.…”
Section: Introductionmentioning
confidence: 99%