Zinc sulfide nanoparticles were synthesized successfully via chemical co-precipitation, both in undoped form and co-doped with Europium (Eu) and Nickel (Ni). All prepared samples exhibited cubic blended structure as confirmed by X-ray diffraction (XRD). The average particle size ranged from 3 to 6 nm for both pure and (Eu, Ni) co-doped ZnS, with no alteration in the crystal structure due to Eu and Ni co-doping. However, increasing the Ni dopant concentration (0, 2, 4, & 6 at. %) while maintaining a constant Eu concentration (4 at. %) led to an enhancement in the crystallite size. This was further validated by transmission electron microscopy (TEM), which showed particle sizes consistent with the XRD findings (3-5 nm). Microscopic analysis via scanning electron microscopy and TEM revealed spherical agglomerated morphology for the (Eu, Ni) co-doped nanoparticles. Energy-dispersive X-ray spectroscopy spectra confirmed the stoichiometric chemical composition of ZnS: Eu, Ni. Photoluminescence studies demonstrated an increased intensity of green luminescence at 6 at.% Ni co-dopant concentration. Moreover, the synthesized samples exhibited promising gas sensing properties, particularly towards ammonia gas, with good selectivity. Notably, both pure and (Eu, Ni) co-doped ZnS nanoparticles showed rapid response and recovery times at room temperature, suggesting their potential applicability in gas sensing applications.