2015 International Conference on Computers, Communications, and Systems (ICCCS) 2015
DOI: 10.1109/ccoms.2015.7562849
|View full text |Cite
|
Sign up to set email alerts
|

A comparative study of classification algorithms for predicting gestational risks in pregnant women

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 0 publications
0
3
0
Order By: Relevance
“…Tıbbi teşhis ve tahminde makine öğrenimi üzerine yapılan önceki araştırmalara bakıldığında; C4.5 Karar Ağacı, Naive Bayes algoritmaları ile hamilelik risklerini ve hamileliğin normal veya anormal evrelerini tahmin etmek üzere çalışmalar yapılmıştır (Lakshmi, Indumathi, & Ravi, 2015). Ahmet vd.…”
Section: Kaynak öZetleri̇unclassified
“…Tıbbi teşhis ve tahminde makine öğrenimi üzerine yapılan önceki araştırmalara bakıldığında; C4.5 Karar Ağacı, Naive Bayes algoritmaları ile hamilelik risklerini ve hamileliğin normal veya anormal evrelerini tahmin etmek üzere çalışmalar yapılmıştır (Lakshmi, Indumathi, & Ravi, 2015). Ahmet vd.…”
Section: Kaynak öZetleri̇unclassified
“…Alisha Kamat et al [7] proposed a prediction model using Naive Bayes and ID3 classifiers to determine the type of delivery based on ultrasonography, urine and blood reports of pregnant women. ML techniques like a decision tree and Naïve Bayes were applied for the prediction of pregnancy-related risk factors [8] and to predict normal or abnormal stages of pregnancy [9]. A classification model was proposed, and it allows an estimation of the interval for the value of the Apgar score depending on mother and newborn data [10].…”
Section: Literature Surveymentioning
confidence: 99%
“…The Naïve Bayes approach was observed to show better performance as compared to ID3. B. N. Lakshmi et al [19] predicted the risk levels during pregnancy with accuracy of 71.30% for the standardized data and 66.08% for non-standardized data. M. W. L. Moreira et al [20] in their study found that the TAN classifier produced the best results in terms of accuracy for predicting four hypertensive disorders during pregnancy than Averaged One Dependence Estimator (AODE) and Naïve Bayes classifiers.…”
Section: Review Of Literaturementioning
confidence: 99%