COVID-19 is a new virus that infects the respiratory tract of the upper respiratory system and organs. Based on the worldwide epidemic, the number of illnesses and deaths was growing every day. Chest X-ray (CXR) pictures are beneficial for monitoring lung diseases, especially COVID-19. Deep learning (DL) is a popular computing concept that has been widely used in medical applications. Efforts to automatically diagnose COVID-19 have been beneficial. This study used convolution neural networks (CNN) models to develop a DL technology for binary classification of COVID-19 using CXR pictures. By reducing the number of layers and tweaking parameters, training time was reduced. The suggested model for training loss of 0.0444 and accuracy of 98.53%. In validation it demonstrates even higher proficiency attaining a loss of 0.0181 and accuracy of 99.17%. These findings highlight the need of using deep learning (DL) for early COVID-19 diagnosis and screening.
KEYWORDS— CNN, COVID-19, X-ray, Model, Deep convolutional neural networks.