A comparative study of different deep learning methods for time-series probabilistic residential load power forecasting
Liangcai Zhou,
Yi Zhou,
Linlin Liu
et al.
Abstract:The widespread adoption of nonlinear power electronic devices in residential settings has significantly increased the stochasticity and uncertainty of power systems. The original load power data, characterized by numerous irregular, random, and probabilistic components, adversely impacts the predictive performance of deep learning techniques, particularly neural networks. To address this challenge, this paper proposes a time-series probabilistic load power prediction technique based on the mature neural networ… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.