A detailed derivation of the master equation of the cavity radiation of a coherently prepared Y-shaped four-level correlated emission laser is presented. The outline of the procedures that can be employed in analytically solving the stochastic differential equations and the rate equations of various correlations are also provided. It is shown that coherently preparing the atoms in the upper two energy levels and the lower level initially can lead to a genuine continuous-variable tripartite entanglement. Moreover, preparing the atoms in the coherent superposition, other than the possible maximum or minimum, of the upper two energy levels, leaving the lower level unpopulated, may lead to a similar observation. With the possibility of the atom at the intermediate energy level to take three different transition roots guided by the induced coherence, this system, in general, is found to encompass versatile options for practical utilization. In particular, coupling at least one of the dipole forbidden transitions by an external radiation is expected to enhance the degree of detectable entanglement.COHERENTLY PREPARED NONDEGENERATE Y-SHAPED . . . A 83, 052322 (2011) Furthermore, assuming that the environment modes can be represented by a three-mode independent vacuum reservoir, it is possible to include its effect following the standard approach [43]. In this respect, with the aid of the above variable transformation, one readily finds
PHYSICAL REVIEW