2022
DOI: 10.3390/s22197608
|View full text |Cite
|
Sign up to set email alerts
|

A Comparative Study of Frequent Pattern Mining with Trajectory Data

Abstract: Sequential pattern mining (SPM) is a major class of data mining topics with a wide range of applications. The continuity and uncertain nature of trajectory data make it distinctively different from typical transactional data, which requires additional data transformation to prepare for SPM. However, little research focuses on comparing the performance of SPM algorithms and their applications in the context of trajectory data. This study selected some representative sequential pattern mining algorithms and eval… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 40 publications
0
3
0
1
Order By: Relevance
“…The study intends to use these approaches, specifically the DT algorithm, to forecast transportation modes from GPS trajectory data. This study contributes to the larger field of travel behavior analysis and provides legislators, trans-portation planners, and urban developers practical insights [9].…”
Section: Introductionmentioning
confidence: 95%
See 1 more Smart Citation
“…The study intends to use these approaches, specifically the DT algorithm, to forecast transportation modes from GPS trajectory data. This study contributes to the larger field of travel behavior analysis and provides legislators, trans-portation planners, and urban developers practical insights [9].…”
Section: Introductionmentioning
confidence: 95%
“…Various computational strategies have been developed over the years to deal with this difficulty. Among these, ML algorithms have emerged as particularly promising [9]. They can learn complex patterns from massive amounts of data, making them ideal for jobs such as transportation mode prediction.…”
Section: Introductionmentioning
confidence: 99%
“…The study chose specific algorithms to analyse and explore representational sequence patterns. These algorithms were then assessed using different factors, with the most significant ones being the time it takes to run the algorithm and the amount of RAM it consumes [20].…”
Section: Related Workmentioning
confidence: 99%
“…Untuk melakukan identifikasi kawasan rawan kebakaran lahan di Kabupaten Kubu Raya, digunakan pemodelan matematik yaitu data mining dengan metode yang digunakan adalah metode sequential pattern mining. Sequential pattern mining merupakan penambangan serangkaian peristiwa atau urutan kejadian, dimana setiap urutan terdiri dari daftar elemen dan setiap elemen terdiri dari satu set item, dan diberi min_support yang ditentukan pengguna ambang batas, penambangan pola sekuensial adalah untuk menemukan urutan kejadian atau pola yang sering muncul, yaitu urutan yang frekuensi kemunculannya dalam rangkaian urutan tidak kurang dari min_support (Ding, Li, Zhang, & Mao, 2022) . Jikai nilai lift rasio lebih besar dari 1, maka kekuatan asosiasinya juga lebih besar.…”
Section: Analisis Dataunclassified