Intelligent Transportation Systems (ITSs) have grown rapidly to accommodate the increasing need for safer, more efficient, and environmentally friendly transportation options. These systems cover a wide range of applications, from transportation control and management to self-driving vehicles to improve mobility while tackling urbanization concerns. This research looks closely at the important infrastructure parts of vehicle-to-vehicle (V2V) communication systems. It focuses on the different types of communication architectures that are out there, including decentralized mesh networks, cloud-integrated hubs, edge computing-based architectures, blockchain-enabled networks, hybrid cellular networks, ad-hoc networks, and AI-driven dynamic networks. This review aims to critically analyze and compare the key components of these architectures with their contributions and limitations. Finally, it outlines open research challenges and future technological advancements, encouraging the development of robust and interconnected V2V communication systems in ITSs.