A Comparative Study of Machine Learning Classifiers in Oil-Immersed Power Transformer Fault Diagnosis
Abstract:The most common fault diagnosis method for oil-immersed power transformers is dissolved gas analysis (DGA). Doernenburg ratios, Rogers ratios, IEC (International Electrotechnical Commission) ratios, and Duval's triangle are conventional DGA techniques for insulating oil in power transformers. In this study, Scikit-learn known as a popular open-source free machine learning tool for Python programming language has been used to develop different machine learning (ML) classifiers to effectively detect defects in o… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.