The treatment of malignant bone tumors is a significant clinical challenge because it requires the simultaneous removal of tumor tissues and regeneration of bone defects, and bifunctional three-dimensional (3D) scaffolds that function in both tumor therapy and tissue regeneration are expected to address this need. In this study, novel bifunctional scaffolds (MS-AKT scaffolds) were successfully fabricated by combining a 3D printing technique with a hydrothermal method. During the hydrothermal process, MoS 2 nanosheets were grown in situ on the strut surface of bioceramic scaffolds, endowing them with photothermal therapeutic potential. Under near-infrared (NIR) irradiation, the temperature of the MS-AKT scaffolds rapidly increased and was effectively modulated by varying the MoS 2 content, scaffold sizes and laser power densities. The photothermal temperature significantly decreased the viability of osteosarcoma cells and breast cancer cells and inhibited tumor growth in vivo. Moreover, the MS-AKT scaffolds supported the attachment, proliferation and osteogenic differentiation of bone mesenchymal stem cells and induced bone regeneration in vivo. This bifunctional scaffold, which treats the tumor and facilitates bone growth, offers a promising clinical strategy to treat tumor-induced bone defects. This proof-of-concept study demonstrates the feasibility of localized tumor therapy and tissue regeneration in diverse tissue engineering applications using multifunctional biomaterials.