Mobile applications are really important nowadays due to providing the accurate check-in data for research. The primary goal of the study is to look into the impact of several forms of entertainment activities on the density dispersal of occupants in Shanghai, China, as well as prototypical check-in data from a location-based social network using a combination of temporal, spatial, and visualization techniques and categories of visitors’ check-ins. This article explores Weibo for big data assessment and its reliability in a variety of categories rather than physically obtained information by examining the link between time, frequency, place, class, and place of check-in based on geographic attributes and related implications. The data for this study came from Weibo, a popular Chinese microblog. It was preprocessed to extract the most important and associated results elements, then converted to geographical information systems format, appraised, and finally displayed using graphs, tables, and heat maps. For data significance, a linear regression model was used, and, for spatial analysis, kernel density estimation was utilized. As per results of hours-to-day usage patterns, enjoyment activities and frequency distribution are produced. Our findings are based on the check-in behaviour of users at amusement locations, the density of check-ins, rush periods for visiting amusement locations, and gender differences. Our data provide light on different elements of human behaviour patterns, the importance of entertainment venues, and their impact in Shanghai. So it can be used in pattern recognition, endorsement structures, and additional multimedia content for these collections.