A Comparative Study of State-of-the-Art Deep Learning Models for Semantic Segmentation of Pores in Scanning Electron Microscope Images of Activated Carbon
Bishwas Pokharel,
Deep Shankar Pandey,
Anjuli Sapkota
et al.
Abstract:Accurate measurement of the microspores, mesopores, and macropores on the surface of the activated carbon is essential due to its direct influence on the material's adsorption capacity, surface area, and overall performance in various applications like water purification, air filtration, and gas separation. Traditionally, Scanning Electron Microscopy (SEM) images of activated carbons are collected and manually annotated by a human expert to differentiate and measure different pores in the surface. However, man… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.