2016 3rd International Conference on Computer and Information Sciences (ICCOINS) 2016
DOI: 10.1109/iccoins.2016.7783180
|View full text |Cite
|
Sign up to set email alerts
|

A comparative study of stemming algorithms for use with the Uzbek language

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
3

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(6 citation statements)
references
References 18 publications
0
3
0
3
Order By: Relevance
“…Algoritma-algoritma tersebut umum digunakan untuk menghapus awalan dan akhiran dalam bahasa Inggris. Konsep penghapusan menggunakan aturan lexicon dan rule-based [11]. Selain itu algoritma khusus berdasar aturan bahasa tertentu juga pernah dikembangkan antara lain untuk bahasa Arab [12], Hindi [13], Uzbek [11], dan Indonesia [6] [14].…”
Section: Pendahuluanunclassified
See 2 more Smart Citations
“…Algoritma-algoritma tersebut umum digunakan untuk menghapus awalan dan akhiran dalam bahasa Inggris. Konsep penghapusan menggunakan aturan lexicon dan rule-based [11]. Selain itu algoritma khusus berdasar aturan bahasa tertentu juga pernah dikembangkan antara lain untuk bahasa Arab [12], Hindi [13], Uzbek [11], dan Indonesia [6] [14].…”
Section: Pendahuluanunclassified
“…Konsep penghapusan menggunakan aturan lexicon dan rule-based [11]. Selain itu algoritma khusus berdasar aturan bahasa tertentu juga pernah dikembangkan antara lain untuk bahasa Arab [12], Hindi [13], Uzbek [11], dan Indonesia [6] [14]. Stemming bahasa Jawa dapat dilakukan dengan memodifikasi aturan Stemming bahasa Indonesia.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Porter stemmer, Lovins, Dawson [35] are some of the popular stemming algorithm for English language. Since for Gujarati language no stemmer is available to use, we have developed our own stemmer.…”
Section: Figure 2 Proposed Text Query-based Video Retrieval Approachmentioning
confidence: 99%
“…For example, in a meeting about the parking problem on campus, key words could include several nouns such as "bus," "campus," "car," and "bicycle" as well as several verbs and adjectives such as "abolish," "allowed," "commute," "difficult," and "easier." In addition, the size of the keyword list can be further reduced by "stemming" the content words [14], i.e., removing the prefix, suffix, or both so that only the root of the word remains.…”
Section: Identifying Irrelevant Textmentioning
confidence: 99%