In the development of sustainable and resilient infrastructures to adapt to the rapidly changing natural and social environment, the complexity of the dependencies and interdependencies within critical infrastructure systems need to be fully understood, as they affect various components of risk and lead to cascading failures. Water and road infrastructures are highly co-located but often managed and maintained separately. One important aspect of their interdependence is the impact of vehicle loading on a road on underlying water pipes. The existing studies lack a comprehensive evaluation of this subject and do not consider possible critical failure scenarios. This study constructed finite element models to analyze the responses of buried water pipes to vehicle loads under an array of scenarios, including various loads, pipe materials, pipe dimensions, and possible extreme conditions, such as corrosion in pipes and a sinkhole under the pipe. The results showed negligible impact of heavy trucks on buried water pipes. The pipe deflection under a maximum allowable truck load in the worst condition was still within the allowable range specified in standards such as those from the American Water Works Association. This implies that the impact of heavy vehicles on water pipes may not need to be considered in the context of the interdependency between water and road infrastructures, which leads to a more unidirectional dependency between these two infrastructures.