1-Triphenylphosphoniobenzo[c]phospholide 1 reacts with [M(CO)(5)Br] (M = Mn, Re) and [Mn(CO)(3)(naphthalene)][BF(4)] to give complexes cis-[M(CO)(4)(1)Br] (5 a,b) and [Mn(CO)(3)(1)][BF(4)] (6 a[BF(4)]), respectively, featuring eta(1)(P)- and eta(5)(pi)-coordination of the phosphole ring. The corresponding reactions with [M(2)(CO)(10)] proceed with conservation of the metal-metal bond and yield, depending on the reaction temperature, dinuclear complexes [M(2)(CO)(8)(1)] (M=Mn, 7 a) or [M(2)(CO)(6)(1)(2)] (M=Mn, Re, 8 a,b) with mu(2)-bridging eta(1)(P):eta(2)(Pdbond;C) coordination of the phosphole moiety. All complexes formed were characterized by spectroscopic data; 5 b, 6 a[BF(4)], and 8 a,b were characterized by X-ray diffraction studies as well. The structural and (31)P NMR data of the dinuclear manganese complex 8 a suggest that the interaction between the metal atoms and the eta(2)-bound Pdbond;C double bond moieties is dominated by the L-->M charge-transfer contribution; this hints at a very low back-donation ability of the central M(2)(CO)(6) fragment. Investigation of the reactions of the Mn complexes 6 a and 8 a with Mg or ferrocenium hexafluorophosphate ([Fc][PF(6)]), respectively, revealed that the chemically reversible mutual interconversion between both species was feasible. Likewise, oxidation of the rhenium complex 8 b with [Fc][PF(6)] gave spectroscopic evidence for the formation of a Re analogue of 6 a. Electrochemical studies suggested that the oxidation 8 a-->2 6 a involves two consecutive single-electron-transfer steps, the first of which is electrochemically reversible and produces a metastable radical cation that is detectable by ESR spectroscopy. The mutual interconversion between 6 a and 8 a represents the first case of a reversible coordination isomerization of a phosphaarene that is triggered by a redox process and might stimulate further studies directed at the use of dinuclear phosphaarene complexes in redox-catalysis.