Semiconducting donor-acceptor (D-A) polymers have attracted considerable attention towards the application of organic electronic and optoelectronic devices. However, a rational design rule for making semiconducting polymers with desired thermal and mechanical properties is currently lacking, which greatly limits the development of new polymers for advanced applications.Here, polydiketopyrrolopyrrole (PDPP)-based D-A polymers with varied alkyl side-chain lengths and backbone moieties are systematically designed, followed by investigating their thermal and thin film mechanical responses. The experimental results show a reduction in both elastic modulus and glass transition temperature (T g ) with increasing side-chain length, which is further verified through coarse-grained molecular dynamics (CG-MD) simulations. Informed from experimental results, a mass-per-flexible bond model is developed to capture such observation through a linear This article is protected by copyright. All rights reserved. 3 correlation between T g and polymer chain flexibility. Using this model, a wide range of backbone T g over 80 C and elastic modulus over 400 MPa can be predicted for PDPP-based polymers. This study highlights the important role of side-chain structure in influencing the thermomechanical performance of conjugated polymers, and provides an effective strategy to design and predict T g and modulus of future new D-A polymers.) The synthesis part was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant (RGPIN-2017-06611), and by the Canadian Foundation for Innovation (CFI). M. U. O. thanks NSERC for a doctoral scholarship.