Summary
Proportional Integral Derivative (PID) controllers still represent the core control method for achieving output regulation of either linear or nonlinear systems in the majority of industrial applications. However, conventional PID control cannot guarantee specific state constraint requirements for the plant, when the system introduces uncertainties. In this paper, a novel nonlinear PID control that achieves output regulation and guarantees a desired state limitation below a given value for a wide class of nonlinear systems with constant uncertainties is proposed. Using nonlinear ultimate boundedness theory, it is shown that the proposed state‐limiting PID (sl‐PID) control maintains a given bound for the desired system states at all times, ie, even during transients, whereas an analytic method for selecting the controller gains is also presented to ensure closed‐loop system stability and convergence at the desired equilibrium. Two nonlinear engineering examples that include an electric motor and a dc/dc converter are investigated using the conventional PID and the proposed sl‐PID to validate the superiority of the proposed controller in achieving the desired output regulation with a given bounded state requirement.