PI-PD controllers have superior performance compared to traditional PID controllers, especially for controlling unstable and integrating industrial processes with time delays. However, computing the four tuning parameters of this type of controller is not an easy task. Recently, there has been significant interest in determining the tuning rules for PI-PD controllers that utilize the stability region. Currently, most tuning rules for the PI-PD controller are presented graphically, which can be time-consuming and act as a barrier to their industrial application. There is a lack of analytical tuning guidelines in the literature to address this shortfall. However, the existing analytical tuning guidelines do not consider a rigorous design approach. This work proposes new robust analytical tuning criteria based on predefined gain and phase margin bounds, as well as the centroid of the stability region. The proposed method has been tested using various simulation studies related to a DC–DC buck converter, a DC motor, and a heat exchanger. The results indicate that the proposed tuning rules exhibit strong performance against parameter uncertainty with minimal overshoots. Furthermore, the suggested technique for simultaneous control of yaw and pitch angles has been tested in a real-time application using the twin rotor multi-input multi-output system (TRMS). Real-time results indicate that, compared to other methods under investigation, the suggested approach provides nearly minimal overshoots.