2011
DOI: 10.1590/s0103-90162011000600012
|View full text |Cite
|
Sign up to set email alerts
|

A comparison between Joint Regression Analysis and the Additive Main and Multiplicative Interaction model: the robustness with increasing amounts of missing data

Abstract: This paper joins the main properties of joint regression analysis (JRA), a model based on the FinlayWilkinson regression to analyse multi-environment trials, and of the additive main effects and multiplicative interaction (AMMI) model. The study compares JRA and AMMI with particular focus on robustness with increasing amounts of randomly selected missing data. The application is made using a data set from a breeding program of durum wheat (Triticum turgidum L., Durum Group) conducted in Portugal. The results o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
14
0
2

Year Published

2012
2012
2024
2024

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 23 publications
(16 citation statements)
references
References 35 publications
0
14
0
2
Order By: Relevance
“…For instance, plants might be destroyed by animals, by floods, or during the harvest, while yield measurements may be erroneously carried out or incorrectly entered into the data base (Rodrigues et al 2011). …”
Section: Introductionmentioning
confidence: 99%
“…For instance, plants might be destroyed by animals, by floods, or during the harvest, while yield measurements may be erroneously carried out or incorrectly entered into the data base (Rodrigues et al 2011). …”
Section: Introductionmentioning
confidence: 99%
“…Multi-environment trials usually give rise to incomplete data sets (Rodrigues et al, 2011;Bergamo et al, 2008). Possible ways of analysing such trials are: (i) extracting a balanced subset of data by deleting those genotypes or environments that contain missing values (Yan et al, 2011);(ii) filling the missing cells with environmental means; or (iii) filling the missing cells with estimated values obtained from fitted multiplicative or mixed linear models (Kumar et al, 2012;Arciniegas-Alarcón et al, 2011).…”
Section: Introductionmentioning
confidence: 99%
“…Embora os experimentos com interação GxE sejam planejados para serem balanceados, é comum a ocorrência de valores ausentes por diversos motivos, como a retirada de genótipos de baixo desempenho, a consideração de novos genótipos, erros humanos e causas naturais (Rodrigues et al, 2011). Assim, experimentos desbalanceados são usualmente obtidos e não podem ser analisados diretamente por metodologias clássicas eficientes, como a do modelo de efeitos principais aditivos e interação multiplicativa (AMMI) ou da análise biplot GGE (Yan et al, 2007;Yang et al, 2009;Gauch Junior, 2013).…”
Section: Introductionunclassified