Resumo -O objetivo deste trabalho foi propor um novo algoritmo de imputação múltipla livre de distribuição, por meio de modificações no método de imputação simples recentemente desenvolvido por Yan para contornar o problema de desbalanceamento de experimentos. O método utiliza a decomposição por valores singulares de uma matriz e foi testado por meio de simulações baseadas em duas matrizes de dados reais completos, provenientes de ensaios com eucalipto e cana-de-açúcar, com retiradas aleatórias de valores em diferentes percentagens. A qualidade das imputações foi avaliada por uma medida de acurácia geral que combina a variância entre imputações e o viés quadrático médio delas em relação aos valores retirados. A melhor alternativa para imputação múltipla é um modelo multiplicativo que inclui pesos próximos a 1 para os autovalores calculados com a decomposição. A metodologia proposta não depende de pressuposições distribucionais ou estruturais e não tem restrições quanto ao padrão ou ao mecanismo de ausência dos dados.Termos para indexação: dados ausentes, decomposição por valores singulares, ensaios multiambiente, experimentos desbalanceados, interação genótipo x ambiente, melhoramento de plantas.
Distribution-free multiple imputation in incomplete two-way tablesAbstract -The objective of this work was to propose a new distribution-free multiple imputation algorithm, through modifications of the simple imputation method recently developed by Yan in order to circumvent the problem of unbalanced experiments. The method uses the singular value decomposition of a matrix and was tested using simulations based on two complete matrices of real data, obtained from eucalyptus and sugarcane trials, with values deleted randomly at different percentages. The quality of the imputations was evaluated by a measure of overall accuracy that combines the variance between imputations and their mean square deviations in relation to the deleted values. The best alternative for multiple imputation is a multiplicative model that includes weights near to 1 for the eigenvalues calculated with the decomposition. The proposed methodology does not depend on distributional or structural assumptions and does not have any restriction regarding the pattern or the mechanism of the missing data.