Adhesion-regulating molecule 1 (ADRM1) has been implicated in tumor development, yet its specific role in bladder cancer (BC) remains undefined. This study aimed to elucidate the function of ADRM1 in BC through a combination of bioinformatics analysis and immunohistochemical analysis (IHC). Utilizing R version 3.6.3 and relevant packages, we analyzed online database data. Validation was conducted through IHC data, approved by the Institutional Ethics Committee (Approval No. K20220830). In both paired and unpaired comparisons, ADRM1 expression was significantly elevated in BC tissues compared to adjacent tissues, as evidenced by the results of TCGA dataset and IHC data. Patients with high ADRM1 expression had statistically worse overall survival than those with low ADRM1 expression in TCGA dataset, GSE32548 dataset, GSE32894 dataset, and IHC data. Functional analysis unveiled enrichment in immune-related pathways, and a robust positive correlation emerged between ADRM1 expression and pivotal immune checkpoints, including CD274, PDCD1, and PDCD1LG2. In tumor microenvironment, samples with the high ADRM1 expression contained statistical higher proportion of CD8 + T cells and Macrophage infiltration. Meanwhile, these high ADRM1-expressing samples displayed elevated tumor mutation burden scores and stemness indices, implying potential benefits from immunotherapy. Patients with low ADRM1 expression were sensitive to cisplatin, docetaxel, vinblastine, mitomycin C, and methotrexate. According to the findings from bioinformatics and IHC analyses, ADRM1 demonstrates prognostic significance for BC patients and holds predictive potential for both immunotherapy and chemotherapy responses. This underscores its role as a biomarker and therapeutic target in BC.