MicroRNA, a class of transcripts involved in the regulation of gene expression, are emerging as promising diseasespecific biomarkers accessible from tissues or bodily fluids. However, their accurate quantification from biological samples remains challenging. We report a sensitive and quantitative microRNA method using an isothermal amplification chemistry adapted to a droplet digital readout. Building on molecular programming concepts, we design DNA circuit that converts, threshold, amplifies and report the presence of a specific microRNA, down to the femtomolar concentration. Using a leak-absorption mechanism, we were able to suppress non-specific amplification, classically encountered in other exponential amplification reactions. As a result, we demonstrate that this isothermal amplification scheme is adapted to digital counting of microRNA: by partitioning the reaction mixture into water-in-oil droplets, resulting in single microRNA encapsulation and amplification, the method provides absolute target quantification. The modularity of our approach enables to repurpose the assay for various microRNA sequences.