2023
DOI: 10.3390/su15021309
|View full text |Cite
|
Sign up to set email alerts
|

A Comparison between Supervised Classification Methods: Study Case on Land Cover Change Detection Caused by a Hydroelectric Complex Installation in the Brazilian Amazon

Abstract: The Volta Grande do Xingu (VGX) in the Amazon Forest of Brazil was chosen to analyze the land use and land cover changes (LULCC) from 2000 to 2017, with the aim of assessing the most suitable classification method for the area. Three parametric (Mahalanobis distance, maximum likelihood and minimum distance) and three non-parametric (neural net, random forest and support vector machine) classification algorithms were tested in two Landsat scenes. The accuracy assessment was evaluated through a confusion matrix.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 55 publications
0
1
0
1
Order By: Relevance
“…In 2023, Affonso et al [35] have executed a remote sensing tool called Volta Grande Do Xingi (VGX). Initially, the images are tested with two different methods.…”
Section: Literature Surveymentioning
confidence: 99%
“…In 2023, Affonso et al [35] have executed a remote sensing tool called Volta Grande Do Xingi (VGX). Initially, the images are tested with two different methods.…”
Section: Literature Surveymentioning
confidence: 99%
“…Algoritma SVM memiliki kemampuan yang baik dalam menemukan hyperplane pemisah dan titik maksimal sehingga menghasilkan nilai akurasi klasifikasi objek yang tinggi (Firmansyah et al, 2019). Algoritma SVM banyak digunakan dalam proses klasifikasi objek atau tutupan lahan dikarenakan keandalannya dibandingkan beberapa algoritma lain yang tersedia seperti maximum likelihood dan distance mahalanobis (Affonso et al, 2023;Karan & Samadder, 2018). Tabel 2 menjelaskan sebaran spasial objek-objek yang berhasil diidentifikasi oleh algoritma SVM.…”
Section: Hasil Dan Pembahasanunclassified