Efficient task execution is critical to optimize the usage of computing resources in process scheduling. Various task scheduling algorithms ensure optimized and efficient use of computing resources. This article introduces an innovative dual-layer scheduling algorithm, Multi-Queue Adaptive Priority Scheduling (MQAPS), for task execution. MQAPS features a dual-layer hierarchy with a ready queue (RQ) and a secondary queue (SQ). New tasks enter the RQ, where they are prioritized, while the SQ contains tasks that have already used computing resources at least once, with priorities below a predefined threshold. The algorithm dynamically calculates the time slice based on process priorities to ensure efficient CPU utilization. In the RQ, the task’s priority level defines its prioritization, which ensures that important jobs are completed on time compared to other conventional methods where priority is fixed or no priority parameter is defined, resulting in starvation in low-priority jobs. The simulation results show that MQAPS better utilizes CPU resources and time than traditional round-robin (RR) and multi-level scheduling. The MQAPS showcases a promising scheduling technique ensuring a balanced framework for dynamic adjustment of time quantum and priority. The MQAPS algorithm demonstrated optimization, fairness, and efficiency in job scheduling.