2010
DOI: 10.1920/wp.cem.2010.3410
|View full text |Cite
|
Sign up to set email alerts
|

A comparison of alternative approaches to sup-norm goodness of fit tests with estimated parameters

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2012
2012
2012
2012

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 42 publications
0
1
0
Order By: Relevance
“…In the same context, Durbin (1973Durbin ( , 1975 investigated several approaches to compute approximate critical values for the Kolmogorov-Smirnov statistic. The martingale transform of Khmaladze (1981) and Durbin (1975)'s approach based on approximate boundary crossing probabilities are reviewed and compared in Parker (2010) when M is a locationscale or a scale-shape univariate family. For tests based on the Cramér-von Mises, the Anderson-Darling or the Watson statistics, Stephens (1976) (see also Sukhatme, 1972;Stephens, 1974) used the fact that the asymptotic distributions of these statistics can be expressed as a weighted sum of χ 2 1 variables and explained in detail how to compute the unknown weights when M is the univariate normal or the exponential distribution.…”
Section: Introductionmentioning
confidence: 99%
“…In the same context, Durbin (1973Durbin ( , 1975 investigated several approaches to compute approximate critical values for the Kolmogorov-Smirnov statistic. The martingale transform of Khmaladze (1981) and Durbin (1975)'s approach based on approximate boundary crossing probabilities are reviewed and compared in Parker (2010) when M is a locationscale or a scale-shape univariate family. For tests based on the Cramér-von Mises, the Anderson-Darling or the Watson statistics, Stephens (1976) (see also Sukhatme, 1972;Stephens, 1974) used the fact that the asymptotic distributions of these statistics can be expressed as a weighted sum of χ 2 1 variables and explained in detail how to compute the unknown weights when M is the univariate normal or the exponential distribution.…”
Section: Introductionmentioning
confidence: 99%