During the passage of Typhoon Nida, the raindrop size distribution parameters, the raindrop spectra, the shape and slope (μ–Λ) relationship, the radar reflectivity factor, and rain rate (Z–R) relationship were investigated based on a two-dimensional (2D) video disdrometer in Guangdong, China, from August 1 to 2, 2016. Due to the underlying surface difference between the ocean and land, this process was divided into two distinct periods (before landfall and after landfall). The characteristics of raindrop size distribution between the period before landfall and the period after landfall were quite distinct. The period after landfall exhibited higher concentrations of each size bin (particularly small drops) and wider raindrop spectral width than the period before landfall. Compared with the period before landfall, the period after landfall had a higher average mass-weighted mean diameter Dm that was smaller than those of other TCs from the same ocean (the Pacific). The μ–Λ relationship and Z–R relationship in this study were also compared with other TCs from the same ocean (the Pacific). This investigation of the microphysical characteristics of Typhoon Nida before landfall and after landfall may improve radar quantitative precipitation estimation (QPE) products and microphysical schemes by providing useful information.