In groundwater hydrology, the characterization of the distribution of groundwater flow within the critical zone received considerable attention in the last decades (Freeze & Cherry, 1979). Our ability to quantify groundwater flow greatly controls our ability to characterize aquifers, predict contaminant transport, and understand biogeochemical reactions and processes occurring in the subsurface (Kalbus et al., 2009; Poeter & Gaylord, 1990). Groundwater flow at interfaces such as recharge and discharge areas also plays a key role in the preservation of groundwater-dependent ecosystems (Kalbus et al., 2006; Sophocleous, 2002). The quantification of groundwater fluxes is also particularly relevant for geothermal energy since they control heat exchange and storage capacities (Diao et al., 2004). Similarly, the characterization of seepage through dams, dikes, and reservoirs is also critical for geotechnical engineering (Foster et al., 2000). The spatial distribution of groundwater fluxes is largely driven by subsurface heterogeneities. Thus, in past decades, the characterization of the distribution of groundwater fluxes and their quantification relied on the capacity of characterizing and modeling the spatial variability of hydraulic conductivities (de Marsily, 1976). Considering the challenge in characterizing the field variability of hydraulic properties, the use of heat as a tracer has been widely developed and applied to characterize flow in aquifers or at interfaces such as the hyporheic zone (