2017
DOI: 10.1007/978-3-319-66917-5_15
|View full text |Cite
|
Sign up to set email alerts
|

A Comparison of Distributed Spatial Data Management Systems for Processing Distance Join Queries

Abstract: Abstract. Due to the ubiquitous use of spatial data applications and the large amounts of spatial data that these applications generate, the processing of large-scale distance joins in distributed systems is becoming increasingly popular. Two of the most studied distance join queries are the K Closest Pair Query (KCPQ) and the ε Distance Join Query (εDJQ). The KCPQ finds the K closest pairs of points from two datasets and the εDJQ finds all the possible pairs of points from two datasets, that are within a dist… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
3

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 12 publications
(11 citation statements)
references
References 14 publications
0
8
0
3
Order By: Relevance
“…The latest systems have been Spark‐based, that is, SpatialSpark, GeoSpark, GeoMesa Spark, Simba, LocationSpark, STARK, Magellan, SparkGIS, and Elcano. Furthermore, the work presented in Reference 34 introduces algorithms for optimizing the distance join queries and implement them using SpatialHadoop and LocationSpark. Differently from our work, approaches in this first group only briefly and technically summarize system by system.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…The latest systems have been Spark‐based, that is, SpatialSpark, GeoSpark, GeoMesa Spark, Simba, LocationSpark, STARK, Magellan, SparkGIS, and Elcano. Furthermore, the work presented in Reference 34 introduces algorithms for optimizing the distance join queries and implement them using SpatialHadoop and LocationSpark. Differently from our work, approaches in this first group only briefly and technically summarize system by system.…”
Section: Related Workmentioning
confidence: 99%
“…Although the frameworks described in this section are efficient for processing conventional data, such as numeric and alphanumeric data types, they do not offer native support for processing spatial data efficiently. For instance, they do not provide indexing mechanisms that are capable of quickly retrieving groups of spatial objects that satisfy a given topological predicate, preventing the development of more efficient query processing algorithms 34 . SASs have emerged to overcome this limitation.…”
Section: Hadoop and Spark As Underlying Frameworkmentioning
confidence: 99%
“…Sistemas Analíticos Espaciais (SAEs) surgiram como uma possível solução para essa demanda. Esses sistemas fornecem funcionalidades especializadas para processar e indexar grandes volumes de dados espaciais por meio da utilização de frameworks de processamento paralelo e distribuído de dados (GARCÍA-GARCÍA et al, 2017). Na literatura, os frameworks Hadoop (APACHE, 2019a) e Spark (APACHE, 2019d) se destacam, uma vez que a maioria dos SAEs existentes são baseados nos mesmos (PANDEY et al, 2018).…”
Section: Contextualizaçãounclassified
“…Além disso, somente SAEs capazes de representar dados espaciais por meio do modelo vetorial foram selecionados. Ademais, propostas existentes no estado da arte que consistem em otimizações muito específicas de um único tipo de operação espacial não foram consideradas na presente análise comparativa, tais como otimizações específicas para o processamento de consultas baseadas em distância (GARCÍA-GARCÍA et al, 2017).…”
Section: Contextualizaçãounclassified
See 1 more Smart Citation