Knowledge of the potential gradient field created by defibrillation electrodes is important for the understanding and improvement of defibrillation. To obtain this knowledge by direct measurements, potentials were recorded from 60 epicardial, eight septal, and 36 right ventricular transmural electrodes in six open-chest dogs while 1 to 2 V shocks were given through defibrillation electrodes (1) on the right atrium and left ventricular apex (RA. V) and (2) on the right and left ventricles (RV.LV). The potential gradient field across the ventricles was calculated for these low voltages. Ventricular fibrillation was electrically induced, and ventricular activation patterns were recorded after delivering high-voltage shocks just below the defibrillation threshold. With the low-voltage shocks, the potential gradient field was very uneven, with the highest gradient near the epicardial defibrillation electrodes and the weakest gradient distant from the defibrillation electrodes for both RA.V and RV.LV combinations. The mean ratio of the highest to the lowest measured gradient over the entire ventricular epicardium was 19.4 + 8. 1 SD for the RA.V combination and 14.4 ± 3.4 for the RV.LV combination. For both defibrillation electrode combinations, the earliest sites of activation after unsuccessful shocks just below the defibrillation threshold were located in areas where the potential gradient was weak for the low-voltage shocks. We conclude that (1) there is a markedly uneven distribution of potential gradients for epicardial defibrillation electrodes with most of the voltage drop occurring near the electrodes, (2) the potential gradient field is significant because it determines where shocks fail to halt fibrillation, and (3) determination of the potential gradient field should lead to the development of improved electrode locations for defibrillation. Circulation 74, No. 3, 626-636, 1986.