Acute myocardial infarction (AMI) is one of the primary causes of death worldwide, with a high incidence and mortality rate. Assessment of the infarcted and surviving myocardium, along with microvascular obstruction, is crucial for risk stratification, treatment, and prognosis in patients with AMI. Nonionizing radiation, excellent soft tissue contrast resolution, a large field of view, and multiplane imaging make cardiac magnetic resonance (CMR) a “one‐stop” method for assessing cardiac structure, function, perfusion, and metabolism. Hence, this imaging technology is considered the “gold standard” for evaluating myocardial function and viability in AMI. This review critically compares the advantages and disadvantages of CMR with other cardiac imaging technologies, and relates the imaging findings to the underlying pathophysiological processes in AMI. A more thorough understanding of CMR technology will clarify their advanced clinical diagnosis and prognostic assessment applications, and assess the future approaches and challenges of CMR in the setting of AMI.