2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA) 2016
DOI: 10.1109/radioelek.2016.7477419
|View full text |Cite
|
Sign up to set email alerts
|

A comparison of key-point descriptors for the stereo matching algorithm

Abstract: In this paper, the comparison of a novel key-point image descriptors such as DAISY, BRISK, A-KAZE and LATCH with the well-known SIFT and SURF descriptors are tested and compared for the stereo matching algorithm. The main idea of this paper is to present an independent, comparative study and some of the benefits and drawbacks of these most popular image descriptors on stereo images. These descriptors are the primary input for the image correspondence algorithm (stereo matching algorithm). On this assumption, i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
1
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 8 publications
0
1
0
2
Order By: Relevance
“…The feature points of two imageries are matched after being described by high dimensional descriptors, then the sea ice motion vectors are calculated based on the offset value of matched points. Different feature point operators generate different results of sea ice motion field in terms of accuracy and vector density [9]. It finds that A-KAZE performs best on sea ice motion deriving than other features in terms of both calculation efficiency and coverage by testing Scale Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF (ORB), and A-KAZE to Sentinel-1 imagery [10].…”
Section: Introductionmentioning
confidence: 99%
“…The feature points of two imageries are matched after being described by high dimensional descriptors, then the sea ice motion vectors are calculated based on the offset value of matched points. Different feature point operators generate different results of sea ice motion field in terms of accuracy and vector density [9]. It finds that A-KAZE performs best on sea ice motion deriving than other features in terms of both calculation efficiency and coverage by testing Scale Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF (ORB), and A-KAZE to Sentinel-1 imagery [10].…”
Section: Introductionmentioning
confidence: 99%
“…No estado da arte para comparação de Pontos de Interesse [Satnik et al 2016] [Pusztai and Hajder 2016] [Bureš and Müller 2016] [Cowan et al 2016] [Wu et al 2017 faz-se uso de parâmetros padrões utilizados pelas bibliotecas, como do OpenCV [Bradski and Kaehler 2008], entretanto dependendo da imagem, se não configurar os parâmetros, o resultado retornado pode não ser esperado, com uso de método de otimização pretende-se obter resultados de comparações mais justos, pois os parâmetros serão alterados individualmente para cada imagem de teste, buscando uma solução subótima dos parâmetros para obter um erro menor. Essa comparação faz parte de um trabalho em andamento, onde esses parâmetros serão configurados automaticamente de acordo com uma meta-heurística para um sistema de posicionamento da aeronave em tempo real.…”
Section: Introductionunclassified
“…Apesar de todo o avanço tecnológica, em alguns casos não é possível obter uma imagem fiel e precisa de uma região de interesse de uma determinada cena. Como exemplo, em imagens de satélite e sensoriamento remoto (PATEL; PATEL; HOLIA, 2015; NAZNEEN; SHAFIQ; HAMEED, 2016; SEDAGHAT; EBADI, 2015; LIU et al, 2016), imagens médicas (GALANDE;PATIL, 2013;PHAN et al, 2016), restauração de imagens (BRITO et al, 2016;SATNIK et al, 2016), perícia de documentos para indicar autenticidade (ARDIZZONE; BRUNO; MAZZOLA, 2015), reconhecimento de padrões e recuperação por conteúdo (GURUPRASAD; GURUPRA-SAD, 2015; TAKÁCS et al, 2015; CHOI; HAN, 2014), entre outras (LIQIAN;YUEHUI, 2010;TONG et al, 2012). Nestes casos, a integração/fusão de imagens pode ser aplicada.…”
Section: Int Roduçãounclassified