Lorenzo S, Minson CT, Babb TG, Halliwill JR. Lactate threshold predicting time-trial performance: impact of heat and acclimation. J Appl Physiol 111: 221-227, 2011. First published April 28, 2011 doi:10.1152/japplphysiol.00334.2011The relationship between exercise performance and lactate and ventilatory thresholds under two distinct environmental conditions is unknown. We examined the relationships between six lactate threshold methods (blood-and ventilation-based) and exercise performance in cyclists in hot and cool environments. Twelve cyclists performed a lactate threshold test, a maximal O2 uptake (V O2max) test, and a 1-h time trial in hot (38°C) and cool (13°C) conditions, before and after heat acclimation. Eight control subjects completed the same tests before and after 10 days of identical exercise in a cool environment. The highest correlations were observed with the blood-based lactate indexes; however, even the indirect ventilation-based indexes were well correlated with mean power during the time trial. Averaged bias was 15.4 Ϯ 3.6 W higher for the ventilation-than the blood-based measures (P Ͻ 0.05). The bias of blood-based measures in the hot condition was increased: the time trial was overestimated by 37.7 Ϯ 3.6 W compared with only 24.1 Ϯ 3.2 W in the cool condition (P Ͻ 0.05). Acclimation had no effect on the bias of the blood-based indexes (P ϭ 0.51) but exacerbated the overestimation by some ventilation-based indexes by an additional 34.5 Ϯ 14.1 W (P Ͻ 0.05). Blood-based methods to determine lactate threshold show less bias and smaller variance than ventilation-based methods when predicting time-trial performance in cool environments. Of the blood-based methods, the inflection point between steady-state lactate and rising lactate (INFL) was the best method to predict time-trial performance. Lastly, in the hot condition, ventilation-based predictions are less accurate after heat acclimation, while blood-based predictions remain valid in both environments after heat acclimation. heat stress; heat acclimation; heat acclimatization; critical power; endurance exercise SEVERAL PHYSIOLOGICAL PARAMETERS, namely, maximal O 2 uptake (V O 2max ), lactate threshold, ventilatory threshold, fraction of slow-twitch fibers, and running economy, are known to be related to (or predictive of) endurance exercise performance (12,13,19). As the margins for success in athletic competition are often quite small, coaches, athletes, and physiologists have long been interested in assessing an individual athlete's lactate or ventilatory threshold, in an effort to use such information to design more effective training plans, optimize an athlete's performance, or make race-day predictions. The terms "lactate threshold" and "ventilatory threshold" have generally been used to define the highest work rate or O 2 uptake (V O 2 ) at which athletes can maintain their efforts over a specified time frame. To the best of our knowledge, no study has focused on simultaneously determining the accuracy of lactate threshold vs. ventila...