The objective of this study is to propose a new fabrication technology for bone substitutes. In this study, a tape-casting method was used to prepare flexible beta-tricalcium phosphate (beta-TCP) sheets. A beta-TCP slurry containing a binder and plasticizer was used in a doctor blade system. The beta-TCP sheet obtained by this tape-casting method was highly flexible, enabling twisting and free-form shaping. The beta-TCP sheet was approximately 0.21 mm thick. X-ray diffraction and Fourier transform infrared spectrometry revealed that the structure of the beta-TCP component in the sheet is the same as that of the original beta-TCP powder. Observation by field-emission scanning electron microscopy showed that the beta-TCP sheet had a flat, microgranular surface. During the early stages, the tensile stress-strain curves of the beta-TCP sheet showed a nonlinear behavior until reaching the point of final fracture. This result was derived from the ductile property of the prepared beta-TCP sheet. In conclusion, a flexible beta-TCP sheet was easily prepared using a tape-casting technique. Fabrication using tape casting offers the advantages of enabling the preparation of ceramic sheets with precise thickness and not requiring expensive fabrication facilities.