White blood cells called lymphocytes are the target of the blood malignancy known as acute lymphoblastic leukemia (ALL). In the domain of medical image analysis, deep learning and transfer learning methods have recently showcased significant promise, particularly in tasks such as identifying and categorizing various types of cancer. Using microscopic pictures, we suggest a deep learning and transfer learning-based method in this research work for predicting ALL blood cells. We use a pre-trained convolutional neural network (CNN) model to extract pertinent features from the microscopic images of blood cells during the feature extraction step. To accurately categorize the blood cells into leukemia and non-leukemia classes, a classification model is built using a transfer learning technique employing the collected features. We use a publicly accessible collection of microscopic blood cell pictures, which contains samples from both leukemia and non-leukemia, to assess the suggested method. Our experimental findings show that the suggested method successfully predicts ALL blood cells with high accuracy. The method enhances early ALL detection and diagnosis, which may result in better patient treatment outcomes. Future research will concentrate on larger and more varied datasets and investigate the viability of integrating it into clinical processes for real-time ALL prediction.