Accurate assessment of burn wound depth and the associated healing potential is vital in determining the need for surgical treatment in burns. Infrared thermography measures the temperature of the burn wound noninvasively, thereby providing indirect information on its blood flow. Previous research demonstrated that a small, lowpriced, handheld thermal imager has an excellent reliability, but a moderate validity for measuring burn wound healing potential. A new and more sensitive version of this convenient device has become available. The aim of this study was to evaluate the validity of thermography for measuring burn wound healing potential, compared to Laser Doppler Imaging (LDI) as a reference standard. Thermal images and LDI scans were obtained from burn wounds between 2 and 5 days postburn. Temperature differences between burned and nonburned skin (ΔT) were calculated. To evaluate validity, ΔT values were compared to the healing potential categories assessed by LDI. Two receiver operating characteristic curves were created and two ΔT cutoff values were calculated to illustrate the ability to discriminate between burn wounds that heal in a time period of less than 14 days, between 14 and 21 days, and more than 21 days. Between June and October 2018, 43 burn wounds in 32 patients were measured. ΔT cutoff values of 0.6 C (sensitivity 68%, specificity 95%) and −2.3 C (sensitivity 30%, specificity 95%) were calculated to discriminate between burn wounds that heal in <14 and ≥14 days, and burn wound that heal in ≤21 and >21 days, respectively. This study shows a good validity of the feasible thermal imager for the assessment of burn wound healing potential. Therefore, we consider it a promising technique to be used for triage in local hospitals and general practices, and as a valuable addition to clinical evaluation in burn centers.