Abstract:Given a smooth complex toric variety we will compare real Lagerberg forms and currents on its tropicalization with invariant complex forms and currents on the toric variety. Our main result is a correspondence theorem which identifies the cone of invariant closed positive currents on the complex toric variety with closed positive currents on the tropicalization. In a subsequent paper, this correspondence will be used to develop a Bedford–Taylor theory of plurisubharmonic functions on the tropicalization.
“…in[8, Remarks 7.1.2, 8.1.3]. Since ∥ • ∥ H is a model metric, we deduce from(23) The line bundle L is ample if and only if H is ample and b is positive definite, see[7, Theorem 6.13].We conclude that the assumptions in 3.5 are satisfied.…”
mentioning
confidence: 67%
“…They have similar properties as the complex (p, q)-forms. More generally, by restriction we get a bigraded differential sheaf A f j α j ∧ Jα j for smooth non-negative functions f j and smooth (p, 0)-forms α j on S. Again, positive forms are obtained from positive forms on N R and the latter are studied in [8]. In particular, we deduce that positive Lagerberg forms on S are closed under products.…”
Toric metrics on a line bundle of an abelian variety A are the invariant metrics under the natural torus action coming from Raynaud's uniformization theory. We compute here the associated Monge-Ampère measures for the restriction to any closed subvariety of A. This generalizes the computation of canonical measures done by the first author from canonical metrics to toric metrics and from discrete valuations to arbitrary non-archimedean fields.Résumé. -(Mesures de Monge-Ampère pour les métriques toriques sur les variétés abéliennes) Les métriques toriques sur un fibré en droites sur une variété abélienne A sont les métriques invariantes sous l'action naturelle du tore issue de la théorie de l'uniformisation de Raynaud. Nous calculons les mesures de Monge-Ampère associées pour les restrictions à toutes les sous-variétés fermées de A. Ceci généralise des travaux du premier auteur sur le calcul des mesures canoniques pour des valuations discrètes au cas des métriques toriques pour des corps non archimédiens arbitraires.
“…in[8, Remarks 7.1.2, 8.1.3]. Since ∥ • ∥ H is a model metric, we deduce from(23) The line bundle L is ample if and only if H is ample and b is positive definite, see[7, Theorem 6.13].We conclude that the assumptions in 3.5 are satisfied.…”
mentioning
confidence: 67%
“…They have similar properties as the complex (p, q)-forms. More generally, by restriction we get a bigraded differential sheaf A f j α j ∧ Jα j for smooth non-negative functions f j and smooth (p, 0)-forms α j on S. Again, positive forms are obtained from positive forms on N R and the latter are studied in [8]. In particular, we deduce that positive Lagerberg forms on S are closed under products.…”
Toric metrics on a line bundle of an abelian variety A are the invariant metrics under the natural torus action coming from Raynaud's uniformization theory. We compute here the associated Monge-Ampère measures for the restriction to any closed subvariety of A. This generalizes the computation of canonical measures done by the first author from canonical metrics to toric metrics and from discrete valuations to arbitrary non-archimedean fields.Résumé. -(Mesures de Monge-Ampère pour les métriques toriques sur les variétés abéliennes) Les métriques toriques sur un fibré en droites sur une variété abélienne A sont les métriques invariantes sous l'action naturelle du tore issue de la théorie de l'uniformisation de Raynaud. Nous calculons les mesures de Monge-Ampère associées pour les restrictions à toutes les sous-variétés fermées de A. Ceci généralise des travaux du premier auteur sur le calcul des mesures canoniques pour des valuations discrètes au cas des métriques toriques pour des corps non archimédiens arbitraires.
“…Given an algebraic subvariety Z ⊆ (C * ) n , the set Log(Z ) is called the amoeba of Z . By Bergman's theorem [9] there exists a close subset of R n such that…”
We analyse the dynamics of the pullback of the map $$z \longmapsto z^m$$
z
⟼
z
m
on the complex tori and toric varieties. We will observe that tropical objects naturally appear in the limit, and review several theorems in tropical geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.