Proceedings of the 2004 ACM Symposium on Applied Computing 2004
DOI: 10.1145/967900.968112
|View full text |Cite
|
Sign up to set email alerts
|

A comparison of several predictive algorithms for collaborative filtering on multi-valued ratings

Abstract: The basic objective of a predictive algorithm for collaborative filtering (CF) is to suggest items to a particular user based on his/her preferences and other users with similar interests. Many algorithms have been proposed for CF, and some works comparing sub-sets of them can be found in the literature; however, more comprehensive comparisons are not available. In this work, a meaningful sample of CF algorithms widely reported in the literature were chosen for analysis; they represent different stages in the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2005
2005
2014
2014

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 15 publications
0
3
0
1
Order By: Relevance
“…In einem zweiten Schritt werden anhand dieses Modells Empfehlungen für jeden Nutzer berechnet. Bekannte Beispiele solcher Algorithmen sind das Cluster-Verfahren, das Bayesian Network Model (Breese et al 1998, S. 48) oder das Dependency Network (Calderón-Benavides et al 2004, S. 1038. Vorteile dieses Ansatzes liegen in der Skalierbarkeit, wobei dieser eine schlechte Prognosegüte gegenüber steht.…”
Section: Collaborative Versus Content-based Filteringunclassified
“…In einem zweiten Schritt werden anhand dieses Modells Empfehlungen für jeden Nutzer berechnet. Bekannte Beispiele solcher Algorithmen sind das Cluster-Verfahren, das Bayesian Network Model (Breese et al 1998, S. 48) oder das Dependency Network (Calderón-Benavides et al 2004, S. 1038. Vorteile dieses Ansatzes liegen in der Skalierbarkeit, wobei dieser eine schlechte Prognosegüte gegenüber steht.…”
Section: Collaborative Versus Content-based Filteringunclassified
“…The reason for choosing a traditional memory-based collaborative filtering approach is that it has been shown to perform well in comparison to many other collaborative filtering techniques. 4,9 Also, as can be seen from the descriptions of the approaches in Secs. 3.1 and 3.2, it is quite similar to the spreading activation approach outlined.…”
Section: Spreading Activationmentioning
confidence: 99%
“…The off-line batch process is followed by most collaborative filtering algorithms to provide recommendations in real-time, but this produces an outdated model where the quality of the recommendations is low. Online algorithms in Collaborative Filtering [7] are more suitable for handling an incoming data stream since these are fast, incremental and there is no need to store all the previously seen examples. The first online algorithm applied to collaborative filtering was the Weighted Majority Prediction (WMP) [8], Delgado et al [9] extended this approach for multi-valued ratings.…”
Section: Related Workmentioning
confidence: 99%