Energy consumption in water supply systems is closely connected with the demand for water, since energy is mostly consumed in the process of water transport and distribution, in addition to the energy that might be needed to pump the water from its sources. Existing studies have been carried out on optimizing the pump operations to attain appropriate pressure and on controlling the water level of storage facilities to transfer the required demand and to reduce the energy cost. The idea is to reduce the amount of the water being supplied when the unit price of energy is high and to increase the supply when the unit price is low. To realize this scheme, the energy consumption of water supply systems, the amount of water transfer, the organization of energy cost structure, the utilization of water tanks, and so forth are investigated and analyzed to establish a model of optimized water demand management based on the application of water tanks in supplied areas. In this study, with the assumption that energy cost can be reduced by the redistribution of a demand pattern, a numerical analysis is conducted on transferring water demand at storage facilities from the peak energy cost hours to the lower energy cost hours. This study was applied at the Bupyeong 2 reservoir catchment, Incheon, Korea.