Abstract. Oxygen tensions in the kidney are heterogeneous, and their changes presumably play an important role in renal physiologic and pathophysiologic processes. A family of hypoxia-inducible transcription factors (HIF) have been identified as mediators of transcriptional responses to hypoxia, which include the regulation of erythropoietin, metabolic adaptation, vascular tone, and neoangiogenesis. In vitro, the oxygen-regulated subunits HIF-1␣ and -2␣ are expressed in inverse relationship to oxygen tensions in every cell line investigated to date. The characteristics and functional significance of the HIF response in vivo are largely unknown. Highamplification immunohistochemical analyses were used to study the expression of HIF-1␣ and -2␣ in kidneys of rats exposed to systemic hypoxia bleeding anemia, functional anemia (0.1% carbon monoxide), renal ischemia, or cobaltous chloride (which is known to mimic hypoxia). These treatments led to marked nuclear accumulation of HIF-1␣ and -2␣ in different renal cell populations. HIF-1␣ was mainly induced in tubular cells, including proximal segments with exposure to anemia/carbon monoxide, in distal segments with cobaltous chloride treatment, and in connecting tubules and collecting ducts with all stimuli. Staining for HIF-1␣ colocalized with inducible expression of the target genes heme oxygenase-1 and glucose transporter-1. HIF-2␣ was not expressed in tubular cells but was expressed in endothelial cells of a small subset of glomeruli and in peritubular endothelial cells and fibroblasts. The kidney demonstrates a marked potential for upregulation of HIF, but accumulation of HIF-1␣ and HIF-2␣ is selective with respect to cell type, kidney zone, and experimental conditions, with the expression patterns partly matching known oxygen profiles. The expression of HIF-2␣ in peritubular fibroblasts suggests a role in erythropoietin regulation.Sufficient oxygenation is a prerequisite for organ function. However, oxygen delivery to organs and tissue oxygen tensions within organs vary considerably. The kidney is characterized by an interesting paradox with respect to its oxygen supply. Although blood flow is high in relation to organ weight and the arteriovenous oxygen difference is small, shunt diffusion of oxygen and heterogeneous utilization lead to marked oxygen gradients (1,2). Oxygen supply to the renal medulla barely exceeds demand, and medullary oxygen tensions are approximately 10 mmHg (3-6). Cortical oxygen tensions are more heterogeneous but are also frequently less than the venous oxygen tensions (4,6 -8).The effects of oxygen on cellular functions of the kidney are poorly understood. High rates of oxygen consumption in the proximal tubule and thick ascending limb, together with limited oxygen supply, are thought to be responsible for the high sensitivity to ischemic injury (2,9,10). A physiologic function directly related to renal oxygen tensions is the production of erythropoietin (EPO) by peritubular cortical fibroblasts (11-13). Regulation of EPO occurs at the mRN...