A dual-rotor system is a core component of an aero-engine, and it is very important to study the nonlinear vibrational characteristics for the aero-engine's development. Based on analyzing structural characteristics of aero-engine's rotors, a novel and more practical dual-rotor dynamic coupling model with nonlinear restoring forces of high-pressure and low-pressure rotors is first proposed. In the linear dynamic coupling model, the coupling critical speed, natural frequencies and vibration responses of the low-pressure rotor are analyzed systematically. In the nonlinear dynamic coupling model, the vibrational characteristics of the dual-rotor system with different nonlinear parameters are simulated numerically based on the nonlinear dynamic theory. The improved shooting method combined the harmonic balance method, and the genetic algorithm is proposed to calculate theoretical solutions of the nonlinear dynamic coupling model. The stability of theoretical solutions is investigated by the Floquet theory. The research results show that the dual-rotor system appears very complicated nonlinear vibrations such as nonlinear multitudinal solutions, double period motions, almost periodic motions and chaotic motions. The transition between nonlinear vibrations occurs suddenly.