“…Although quickly applied and potentially very accurate for large input parameters (due to the central limit theorem), the sign of the approximation errors is typically unknown. Exceptions are the inequality of Bohman (see [1, page 169]), which always overestimates the true Poisson probability, and the expressions recently proposed by Zubkov and Serov for the Binomial distribution [5]. Methods to obtain provable bounds with known error signs (typically one would require to underestimate (1) and (2), whilst overestimating (3) and (4) in most engineering and computer science applications) principally include the Bernstein/Chernoff/Hoeffding-type exponential probability inequalities and their close variants [1,2,6,7].…”