In the pursuit of effective diabetes management, inhibiting α-amylase activity stands as a critical strategy. This inhibition regulates post-meal blood sugar levels by retarding carbohydrate digestion, mitigating abrupt glucose spikes, and enhancing glycemic control, thus safeguarding against diabetic complications. In this study, molecular docking and DFT investigations were conducted on phytochemical compounds sourced from various plants, unveiling Conanine, Friedelin, Sennoside A, and Sennoside B as promising candidates. These compounds demonstrated robust binding affinities exceeding -9 kcal/mol when targeted against α-amylase, with Conanine leading the charge at -9.5 kcal/mol. Sennoside A and Sennoside B exhibited their effectiveness by forming multiple hydrogen bonds with the enzyme, underlining their strong binding interactions. Furthermore, DFT calculations affirmed the favorable chemical reactivity profiles of these ligands, characterized by significant HOMO-LUMO energy gaps. This research offers valuable insights into potential therapeutic agents for diabetes management, promising better glycemic control and a brighter future for individuals with diabetes.