A Complete Strategy to Achieve High Precision Automatic Segmentation of Challenging Experimental X‐Ray Computed Tomography Data Using Low‐Resemblance Synthetic Training Data
Athanasios Tsamos,
Sergei Evsevleev,
Rita Fioresi
et al.
Abstract:It is shown that preconditioning of experimental X‐ray computed tomography (XCT) data is critical to achieve high‐precision segmentation scores. The challenging experimental XCT datasets and deep convolutional neural networks (DCNNs) are used that are trained with low‐resemblance synthetic XCT data. The material used is a 6‐phase Al–Si metal matrix composite‐reinforced with ceramic fibers and particles. To achieve generalization, in our past studies, specific data augmentation techniques were proposed for the … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.