The Quantitative Randomized Response Technique (RRT) can be used by researchers to obtain honest answers to questions that, due to their sensitive (socially undesirable, dangerous, or even illegal) nature, might otherwise invoke partially or completely falsified responses. Over the years, Quantitative RRT models, sometimes called Scrambling models, have been developed to incorporate such advancements as mixture, optionality and enhanced trust, each of which has important benefits. However, no single model incorporates all of these features. In this study, we propose just such a unified model, which we call the Mixture Optional Enhanced Trust (MOET) model. After developing methodologies to assess MOET based on standard approaches and using them to explore the key characteristics of the new model, we show that MOET has superior efficiency compared to the Quantitative Optional Enhanced Trust (OET) model. We also show that use of the model’s mixture capability allows practitioners to optimally balance the model’s efficiency with its privacy, making the model adaptable to a wide variety of research scenarios.