2020
DOI: 10.1101/2020.07.30.194266
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A composite method to infer drug resistance with mixed genomic data

Abstract: Background: The increasing incidence of drug resistance in tuberculosis and other infectious diseases poses an escalating cause for concern, emphasizing the urgent need to devise robust computational and molecular methods identify drug resistant strains. Although machine learning-based approaches using whole-genome sequence data can facilitate the inference of drug resistance, current implementations do not optimally take advantage of information in public databases and are not robust for small sample sizes an… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?