Green spaces are believed to improve the well-being of users in urban areas. While there are urban research exploring the emotional benefits of green spaces, these works are based on user surveys and case studies, which are typically small in scale, intrusive, time-intensive and costly. In contrast to earlier works, we utilize a non-intrusive methodology to understand green space effects at large-scale and in greater detail, via digital traces left by Twitter users. Using this methodology, we perform an empirical study on the effects of green spaces on user sentiments and emotions in Melbourne, Australia and our main findings are: (i) tweets in green spaces evoke more positive and less negative emotions, compared to those in urban areas; (ii) each season affects various emotion types differently; (iii) there are interesting changes in sentiments based on the hour, day and month that a tweet was posted; and (iv) negative sentiments are typically associated with large transport infrastructures such as train interchanges, major road junctions and railway tracks. The novelty of our study is the combination of psychological theory, alongside data collection and analysis techniques on a large-scale Twitter dataset, which overcomes the limitations of traditional methods in urban research.