Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were and (, , ) for the HF cases and and (, , ) for the healthy case.