Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting the amalgamation of proprioceptive and exteroceptive sensors to improve UUV navigational accuracy and system resilience. Essential sensor applications, including inertial measurement units (IMUs), Doppler velocity logs (DVLs), cameras, sonar, and LiDAR (light detection and ranging), are examined for their contributions to navigation and perception. Fusion methodologies, such as Kalman filters, particle filters, and graph-based SLAM, are evaluated for their benefits, limitations, and computational demands. Additionally, innovative technologies like quantum sensors and AI-driven filtering techniques are examined for their potential to enhance SLAM precision and adaptability. Case studies demonstrate practical applications, analyzing the compromises between accuracy, computational requirements, and adaptability to environmental changes. This paper proceeds to emphasize future directions, stressing the need for advanced filtering and machine learning to address sensor drift, noise, and environmental unpredictability, hence improving autonomous underwater navigation through reliable sensor fusion.
Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting the amalgamation of proprioceptive and exteroceptive sensors to improve UUV navigational accuracy and system resilience. Essential sensor applications, including inertial measurement units (IMUs), Doppler velocity logs (DVLs), cameras, sonar, and LiDAR (light detection and ranging), are examined for their contributions to navigation and perception. Fusion methodologies, such as Kalman filters, particle filters, and graph-based SLAM, are evaluated for their benefits, limitations, and computational demands. Additionally, innovative technologies like quantum sensors and AI-driven filtering techniques are examined for their potential to enhance SLAM precision and adaptability. Case studies demonstrate practical applications, analyzing the compromises between accuracy, computational requirements, and adaptability to environmental changes. This paper proceeds to emphasize future directions, stressing the need for advanced filtering and machine learning to address sensor drift, noise, and environmental unpredictability, hence improving autonomous underwater navigation through reliable sensor fusion.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes. Furthermore, a 6G communication module is deployed to reduce network delay and enhance packet delivery, contributing to more efficient data transmission. Leveraging Autonomous Underwater Vehicles (AUVs), the EETAUV protocol offers a lightweight approach for node discovery, identification, and verification while ensuring a high data transmission rate through a risk-aware strategy including at low computational cost. The protocol’s performance is evaluated through extensive simulations and compared against state-of-the-art methods across various metrics, including network lifetime, throughput, residual energy, packet delivery ratio, mean square error, routing overhead, path loss, network delay, trust, distance, velocity, Computational Cost of Routing, and data security. The results demonstrate the superior cumulative performance of the proposed EETAUV scheme, making it a robust solution for secure, efficient, and reliable communication in UASNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.