“…Since ANNs define, in general, a nonlinear algebraic function, they can cope with nonlinearities inherent in control systems possessing complex dynamics. As in the general ANN literature, the mostly widely used ANN model in identification and control is the Multi Layer Perceptron (MLP) due to its function approximation capability and the existence of an efficient learning algorithm (Ahmed, 2000;Lightbody & Irwin, 1995;Meireles et al, 2003;Noriega & Wang, 1998;Omidvar & Elliott, 1997). MLP is a multilayer, algebraic neural network of neurons, called as perceptrons, which are multi-input, single-output functional units taking firstly a weighted sum of their inputs and then pass it through a sigmoidal nonlinearity to produce its output shown in Fig.…”