In the last decades, all technology production sectors reached a high level of development, without neglecting the attention to environmental aspects and safeguarding energy resources. Moreover, in the sector of pavement industry, some alternatives of bituminous mixtures were proposed to reduce the greenhouse gas emissions. One of these is the warm mix asphalt (WMA), a mixture produced and compacted at lower temperatures compared to traditional hot mix asphalt (HMA) (about 40 °C less), to allow a reduction of emissions into the atmosphere and the costs. Other operative benefits concern the health of workers during the whole road construction process, the reduction of distances to which the mixture can be transported, and therefore also the positioning of the plants. However, it is not all benefits, since reduced production temperatures can bring short- and long-term water sensitivity issues, which could threaten the pavement performance. This paper evaluated the performance (water sensitivity, stiffness, fatigue, and permanent deformation) of a WMA produced using a warm mix fabrication bitumen and compared it with an HMA tested in parallel. In general, except for the resistance to permanent deformation, the WMA presented performances comparable to HMA. Regarding the fatigue behavior of asphalt mixtures, the WMA was less affected by ageing conditions, despite it showing lower performance than HMA.