This article presents a comprehensive scientometric analysis of mining waste valorization, focusing on tailings utilization in construction materials from 2010 to 2024. Through examination of 1096 Web of Science publications and utilizing CiteSpace mapping and network analyses, we analyze the intellectual structure of this field. Subject category analysis reveals materials science, construction technology, and environmental engineering as the dominant disciplines, interconnected through 168 links across 64 thematic nodes. Our co-citation analysis identifies 12 major research clusters, with materials science and environmental engineering serving as primary disciplinary pillars. Keyword co-occurrence analysis of 532 nodes connected by 1181 links highlights the field鈥檚 emphasis on fly ash, concrete applications, and mechanical properties. Recent citation bursts indicate growing research focus on thermal stability, heavy metal treatment, and innovative processing methods. Through synthesizing these scientometric indicators, this review provides strategic insights for advancing sustainable construction practices through mining waste utilization. Research gaps identified include long-term durability assessment, standardization needs, and scalability challenges. By synthesizing these diverse scientometric indicators, this review provides strategic insights for researchers, industry practitioners, and policymakers, contributing to the advancement of sustainable construction practices through mining waste utilization.